

Decarbonisation in the shipping business: future fuel options and their implications for the storage sector

About Channoil Energy

At the forefront of the global oil and gas advisory industry for over 20 years. Extensive coverage of Europe, Middle East and Africa.

About us:

- We consult for countries, governments, institutions and companies.
- All aspects of mid and downstream oil and gas.
- Emerging renewables practice.
- Established industry relationships and strong market contacts.
- Up-to-date knowledge of international and domestic oil and gas markets.
- Senior team members have more than 30 years experience in the downstream oil business.
- Supported by a highly-skilled team of associate consultants.

Today's discussion

Bunker supply in transition.

- IMO 2020 what happened?
- Bunker supply today
- The IMO 2050 agenda
- Stricter rules in Europe?
- Alternative fuel options
- Vessel and fuel economics
- Carbon pricing impacts
- Implications for the storage sector
- Conclusions

IMO 2020 - what happened?

The expected tightness failed to materialise.

- Shortages of VLSFO and dependence on Marine gasoil was widely expected.
- This did not happen because:
 - Refiners did a good job on producing VLSFO.
 - Traders built stocks which supported demand for Q1.
- Covid-19 impacts
 - The collapse in demand for transport fuels reduced refining pressures.
 - This eased the supply and pricing of VLSFO.
 - HSFO remained relatively tight, as supply was reduced by refinery run cuts.
 - Many small or simple refineries have announced closure or conversion to bio-refining.
 - The LS/HS differential was depressed throughout 2020.

Bunker supply today

Adequate supply thanks to subdued global demand.

- Demand recovery is strongest in Southeast Asia.
- Europe and North America are still recovering and transport fuel demand remains subdued.
- Continued lack of pressure in the refining system.
- VLSFO demand is supporting smaller straight-run refineries with good access to sweet crudes.
- Closure of small inefficient refineries will be compensated by new sophisticated refineries in the Middle East and Asia.
- Scrubber economics are currently poor.
- We do not expect the LS/HS spread to widen significantly until demand recovers globally.

The IMO 2050 agenda

Decarbonisation of the maritime sector by 50% by 2050.

- The next stage for the sector is to decarbonise:
 - 50% reduction in GHG emissions in the global shipping fleet by 2050.
 - \circ 70% reduction in "carbon intensity" (CO₂ emissions per shipment) by the same time.
 - Against a 2008 baseline.
- A complex set of mandates, targets and guidelines is being developed by the IMO.
- Efficiency targets will drive changes in shipping practice.
- The 50% GHG reduction will not be met by efficiency savings alone: lower carbon fuels will be needed.

Stricter rules in Europe?

EU planned mandates are faster and deeper than IMO 2050.

- The EU intends to include the maritime sector in its emissions trading scheme from 2022.
- This is essentially a CO₂ tax on shipping in EU waters from that date.
- EU target is for a 55% reduction in GHG emissions by 2030.
- The target will be either a regulation when sailing in EU waters, or for any journey with an EU destination.
- The conflict in targets could lead to:
 - Regulatory arbitrage.
 - A change in stance from either IMO or the EU.
 - Other jurisdictions following the EU lead.
 - The EU leading alone.

Alternative fuel options

LNG and possibly biofuels are the most developed short-term options.

LNG	 Less carbon intensive than fuel oils and supply infrastructure growing.
Biofuels	 Potential drop-in replacement, but problematic in wet systems - and expensive.
LPG	 Already in use as a fuel for LPG carriers, but bunkering infrastructure is limited.
Methanol	 Already in use for methanol carriers, but green methanol production does not yet exist.
Ammonia and hydrogen	 Both fuels are chemically zero carbon options, but expensive and not yet commercially viable.
Electric	 Only really feasible just for local shipments, not for global supply routes.

Vessel and fuel economics

Dual fuel vessel investment has definite potential

				Scenario	1			2		3			
				Brent \$/barrel	\$	67.50	\$	67.50	\$	67.50			
				Carbon price €/tonne	€	-	€	30.00	€	250.00			
Product	Comment	Price	\$/tonne	Tonnes fuel per day	Benefit vs Benefit vs Bene VLSFO VLSFO VL								nefit vs VLSFO
VLSFO	100% GHG	\$	505	55	\$	-	\$	-	\$	-			
MGO	100% GHG	\$	535	51	\$	550	\$	1,000	\$	4,200			
LNG	80% GHG	\$	362	47	\$	10,700	\$	12,700	\$	27,500			
HVO	from UCO	\$	1,335	45	\$ -	32,000	\$	-27,000	\$	12,700			
FAME	from UCO	\$	1,220	50	\$-	33,500	\$	-27,000	\$	11,600			

- LNG is the lowest cost refuelling option available today.
- Current pricing is well above what is needed to remunerate investment in a dual fuel vessel.
- HVO and FAME economics are far worse.
- A high carbon price will be needed to justify HVO or FAME on a standalone basis.

¹ Based on prices from Friday 5th March 2021

Implications for bunker fuels

Proliferation of grades

- Bunker demand will continue to grow with world trade growth.
- This will be balanced by increases in vessel efficiency.
- There will be more bunker fuel grades in future.
- HVO and FAME are expensive niche demand grades.
- LNG is increasingly popular as a lower carbon (not zero carbon) option
- Ship-owners are ordering more dual fuel tonnage.
- Transition options need to last as long as the ship.
- Other options (e.g. green ammonia, hydrogen or methanol) are not expected to be economic for 10+ years.

Implications for the storage sector

Complexity and reduced unit throughput

- More grades means more complex storage requirements.
- FAME and HVO may need to be added to the list of liquid fuel options.
- More grades means reduced unit throughput for each grade.
- LNG demand will increase and requires completely new infrastructure.
- None of these grades are the long-term solution.
- But, they will help with the transition
- In 10-15 years, greener fuels should start to be competitive.
- Dual fuel vessels will then look to convert.
- Some new grades have tough HSSE requirements.

Conclusions

Managing complexity and economies of scale

- This is no longer a world where a bunker supplier can simply operate a few tanks.
- Small terminals will be challenged by the complexity of grades.
- Especially so where they rely on import economics for supplying the grades.
- Larger terminals will be able to compete more effectively.
- The EU may well push through their ETS agenda.

Contact us for advice on supply chain optimisation or storage investment options.

THANK YOU!

Channoil Energy

4th Floor, Chronicle House, 72-78 Fleet Street,

London, EC4Y 1HY, UK

Email: consult@channoilenergy.com

Tel: +44 20 7583 7873

www.channoilenergy.com